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Introduction

* Complex ocean systems such as the Antarctic
Circumpolar Current (ACC), which play key roles in
the Earth’s climate, are known to change in strength
and location under climate change

* These shifts are not well constrained and their physical
drivers are not well understood

* We use the machine learning-driven method Tracking
Heating with global Ocean Regimes (THOR) to both
identify and track regions of the ocean characterized by
similar physics, revealing drivers of ocean dynamical
shifts under climate change

Tracking Heating with
global Ocean Regimes
(THOR)

We extend THOR, originally developed by Sonnewald
and Lguensat [1], to a 0.25°, mesoscale eddy permitting
ocean model, the Modular Ocean Model version 6
(MOMS6), a component of the Coupled Model version 4
(CM4). THOR consists of two components.

Step 1: Unsupervised clustering of ocean grid cells

* Dynamical regimes are regions of the ocean
characterized by similar physics as defined by the
barotropic vorticity (BV) equation
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* Native Emergent Manifold Interrogation (NEMI) [2]
is used to cluster ocean grid cells based on their
average balance of the BV equation during a
pre-industrial control (piControl) run

MOMG6 piControl Dynamical Regimes
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Figure 1: Six dynamical regimes discovered by NEMI on
the piControl run of MOMB6.

Step 2: Supervised learning of dynamical regimes

* An ensemble of neural networks (NNs) is trained to
predict dynamical regimes from more accessible input
fields for seamless application to other scenario
experiments or entirely different ocean models

e Inputs: sea surface height above the geoiod (ZOS) +
lat/lon gradients, depth relative to sea level
(bathymetry) + lat/lon gradients, curl of surface wind
stress torque (V X T;), Coriolis parameter (f),
depth-summed zonal and meridional mass transport
(umo_2d and vmo 2d)

e Entropy is used to quantify the NN ensemble’s
uncertainty in its predictions [3]

Application to the
Southern Ocean

We apply THOR’s NN to the Historical and SSP585 runs
of MOMBS to track dynamical regimes in the Southern
Ocean under climate change.
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Figure 2: NN dynamical regime predictions for the His-
torical and SSP585 runs along with entropy (uncertainty)
for the SS585 predictions. The contours show bathymetry,
and the region of interest where the ACC meets the
Pacific-Antarctic Ridge is outlined in white.

* We focus on the region where the ACC meets the
Pacific-Antarctic Ridge (PAR), a divergent tectonic

plate boundary characterized by rough bathymetry at
around 60°S, 166°W

e Specifically, between the Historical and SSP585 runs we
see a shift in dynamical regime from Regime 4 (light
green), which is characterized by a large wind stress, to
Regime 0 (blue), which is characterized by flow free of
bathymetric influence
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* Two eXplainable Artificial Intelligence (XAI)
methods, layer-wise relevance propagation (LRP) and
SHapley Additive exPlanations (SHAP), reveal that the
curl of surface wind stress torque (V X T;) and the
bathymetry actively help the NN make its regime
predictions where the ACC meets the PAR

Guided by the new knowledge revealed by THOR, we
find that the wind stress maximum shifts northward,
which changes the ACC’s interactions with the
bathymetry of the PAR.
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Figure 3: Transects at 166°W of zonal mass transport
(umo _2d) for both the Historical and SSP585 runs. The
ACC and PAR are outlined in black and white, respec-
tively.

 ACC-PAR regime shifts are caused by a northward
shift in the ACC driven by changes in wind stress

e This ACC movement brings it away from the PAR into
a new, less variable bathymetric region where its
interactions with the sea floor are less strong, thus
leading to stronger baroclinic flow

Conclusion

* We extend THOR to a mesoscale eddy permitting
climate model, which allows us to precisely identify
and track ocean dynamical regimes under climate
change

e Future work will include applying THOR to other
climate models to understand differences in their ocean
physics parameterizations
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